Физически двойные звезды по эллипсам вращаются вокруг общего центра масс. Однако, если отсчитывать координаты одной звезды относительно другой, то получится, что звезды движутся друг относительно друга тоже по эллипсам.

Для начала выясним, какие звезды так называют. Давайте сразу отбросим тот тип двойных, который носит название «оптически двойные звезды«. Это — пары звезд, случайно оказавшиеся рядом на небе, то есть в одном направлении, а в пространстве, на самом деле, их разделяют большие расстояния. Этот тип двойных мы рассматривать не станем. Нас будет интересовать класс физически двойных, то есть действительно связанных гравитационным взаимодействием звезд.

Физически двойные звезды по эллипсам вращаются вокруг общего центра масс. Однако, если отсчитывать координаты одной звезды относительно другой, то получится, что звезды движутся друг относительно друга тоже по эллипсам. На этом рисунке за начало отсчета мы взяли более массивную голубую звезду. В такой системе центр масс (зеленая точка) описывает вокруг голубой звезды эллипс. Хочется предостеречь читателя от распространенного заблуждения, заключающегося в том, что часто полагается будто бы более массивная звезда сильнее притягивает звезду с малой массой, чем наоборот. Любые два объекта притягивают друг друга одинаково. Но объект с большой массой труднее сдвинуть с места. И хотя падающий на Землю камень притягивает Землю с той же силой, что и Земля его, этой силой невозможно побеспокоить нашу планету, и мы видим, как движется камень.

Конечно, можно утверждать, что любые две звезды взаимодействуют по закону Ньютона. Самым простым для понимания ограничением можно считать следующее условие: силы взаимодействия между компонентами двойной системы во много раз больше, чем силы взаимодействия с любой другой звездой. Это не вполне строго, но в нашем случае — достаточно. Итак, мы будем говорить об обособленных парах звезд.

Часто, правда, встречаются так называемые кратные системы, с тремя и более компонентами. Однако движение трех и более взаимодействующих тел неустойчиво. В системе, скажем, из трех звезд всегда можно выделить, двойную подсистему и третью звезду, вращающуюся вокруг этой пары. В системе из четырех звезд могут существовать две двойные подсистемы, вращающиеся вокруг общего центра масс. Иными словами, в природе, устойчивые кратные системы всегда сводятся к системам из двух членов.

К системе из трех звезд принадлежит небезызвестная Альфа Центавра, считающаяся многими ближайшей к нам звездой, а на самом деле, третий слабый компонент этой системы — Проксима Центавра, красный карлик, — находится ближе. Все три звезды системы из-за близости видны раздельно.

Действительно, иногда то, что звезда двойная, видно в телескоп. Такие двойные называются визуально двойными (не путать с оптически двойными!). Как правило, это не тесные пары, расстояния между звездами в них велики, гораздо больше их собственных размеров.

Часто звезды в парах сильно различаются по блеску, тусклую звездочку затмевает блеском яркая. Иногда в таких случаях астрономы узнают о двойственности звезды по отклонениям в движении яркой звезды под действием невидимого спутника от рассчитанной для одиночной звезды траектории в пространстве. Такие пары называют астрометрически двойными. В частности, Сириус долго относился к такому типу двойных, пока мощность телескопов не позволила разглядеть невидимый доселе спутник — Сириус В. Эта пара стала визуально двойной.

Бывает, что плоскость обращения звезд вокруг их общего центра масс проходит или почти проходит через глаз наблюдателя. Орбиты звезд такой системы расположены, как бы, ребром к нам. Здесь звезды будут периодически затмевать друг друга, блеск всей пары будет с тем же периодом меняться. Этот тип двойных называется затменно-двойными. Если же говорить о переменности звезды, то такую звезду называют затменно-переменной, что также указывает на ее двойственность. Самой первой открытой и самой известной двойной такого типа является звезда Алголь в созвездии Персея.

Последним типом двойных являются спектрально двойные. Их двойственность определяется при изучении спектра звезды, в котором замечаются периодические смещения линий поглощения или видно, что линии являются двойными, на чем основывается вывод о двойственности звезды.

Чем же интересны двойные звезды? Во-первых, они дают возможность узнать массы звезд, так как легче всего и надежнее всего она вычисляется по видимому взаимодействию двух тел. Прямые наблюдения позволяют узнать общий «вес» системы, а если добавить к ним известные соотношения между массами звезд и их светимостями, о которых говорилось выше в рассказе о судьбе звезд, то можно выяснить массы компонентов, проверить теорию. Одиночные звезды такой возможности нам не предоставляют. Кроме того, как тоже было упомянуто ранее, судьба звезд в таких системах может разительно отличаться от судьбы таких же одиночных звезд. Об этом мы и поговорим подробнее.

Нетесные пары, расстояния между которыми велики, по сравнению с размерами самих звезд, на всех стадиях своей жизни живут по тем же законам, что и одиночные звезды, не мешая друг другу. В этом смысле, их двойственность никак не проявляется.